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In theoretical investigations attention is devoted chiefly to the use of 
either crossed magnetic and electrio fields [ 1,2,3.4 1 or running mag- 
netic fields c 5.6.7 1. 

Below we investigate driving an incompressible electrically-conduct- 
ing fluid by means of constant transverse and time-varying longitudinal 
magnetic field. 

In Section 1 we consider the unsteady flow of a viscous incompressible 
conducting medium in a plane channel provided with a homogeneous trans- 
verse magnetic field, where the motion arises as a result of a variable 
longitudinal magnetic field penetrating the fluid from the walls. The 
general solution of the problem is found bs means of the Laplace trans- 
form. In the ease of a linear variation with time of the intensity of 
the external longitudinal field, a simple 
formula is found expressing the speed and mag- IJ 

netic and electric field intensities at a 5, -- 
- s,, Iti 

cross-section of the channel for the limiting /// //i/j. ‘// /‘A/ ’ 1. 
regime of uniform motion of the medium. 

A detailed investigation of the transition 
j 0 2 

‘l/‘/Y I / / //#;//’ ,/,/ I 
regime is carried out in Section 2, where the 
analogous problem is studied for an inviscid 
fluid. Here it is shown that for sufficiently Fig. 1. 

small values of the magnetic Reynolds number the transition regime has 
an aperiodic character. The case of uniformly accelerated motion of the 
medium is also considered. 

In Section 3 we investigate driving an inviscid conducting fluid in a 
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channel of annular cross-section. 

In view of the complexity of the resulting equations, results are de- 
duced only for the limiting regime of uniform motion. 

1. Driving a viscous fluid in a plane channel. We consider 
the following problem. Au infinitely long plane channel of height a is 
filled with an incompressible viscous electrically conducting fluid. The 
upper wall of the channel is assumed to be nonconducting and the lower 
wall ideally conducting. There exists a homogeneous transverse magnetic 
field B, parallel to the x-axis (Fig. 1). 

At time t = 0 a homogeneous magnetic field Be,(t) is created parallel 
to the z-axis in the vicinity of the upper wall, whose variation is 
assumed known. As a result of penetration of this magnetic field into the 
fluid there is induced in it an electric field EY and current j,. 

‘Ihe transverse magnetic field B, and current jy produce a field of 
body forces, under whose action the conducting fluid is set into motion. 

We will assume for simplicity that the physical properties (p, q, ~1 
of the fluid are constant, and that the magnetic permeability p is equal 
for the fluid and the walls. We assume also 
may be neglected (cf. [ 8 1, pp. 237, 270). 

Then in the region of the upper wall the 
by the equations 

rot B” = 0 I div B* L- 

and in the region occupied by the fluid the 
the medium is determined by the equations 

that the displacement current 

magnetic field is described 

0 (x>a) (1.1) 

behavior of the field and 

P $-=-Vp+jXB+qAv, div v = 0 

j =_rotB=6(E+vxB), divR = 0 (1.2) 

rotE= -$ (0 <I < (I) 

Since in the problem under consideration all quantities depend upon 
only the one coordinate .v, we obtain from the system (1.1) to (1.2) the 
relations 

%h 
j=---=&(e+u), 

%h de 

aE 
-:- - 
az % 

(O<$<f) 

(3 24) 
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Here dimensionless variables have been introduced according to 

(u = a BO /\/ ( ,up 1 is the speed of Alfven waves) 
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(I .3) 

‘Ihe system (1.4) is to be solved under the following initial and 
boundary conditions: 

U = 0, h = 0, e=O for t = 0 (1.6) 

U = 0, e = 0, for t; 0, j=O 

u = 0, h = ho (T) for t> 0, E-1 (2.7) 

Applying the Laplace transformation to Equations (1.4) we obtain 

1 d2U 
+xJp J=-d$=R,,(E+U), pH = -d$ (1.8) 

where the boundary 

From the system 

conditions (1.7) 

E=U=O 

H = H,, U= 

(1.8) we find by 
for the transform of the speed: 

take the form 

for E, = 0 

0 for E = 1 

elimination the following 

dW a-_[RR, +(R +Rm)pl$+RRrn~~tJ=O 

whije RR, = ‘9 = kI3 (M = Hartmann number) 

(1.9) 

equations 

(1.10) 

Solving E&rations (1.10) and determining the constants of integration 
from the boundary conditions (1.9), we obtain the following formulas for 
the transforms of the speed and field intensities: 
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‘Ihe transformation is inverted using the inversion formulas 

lt= &\ u exppzdp, ft = a,\ Hexp pzdp, e ;-&\Eoxppzdp (1.15) 
I, L I, 

We restrict ourselves further to the case when the intensity of the 
external magnetic field varies according to the law it, = UT (H,, = a/p2 
Since U, H and E are then functions of p whose sign does not change, 
their inversions are found by sumnation of the residues at the poles 

p = 0, p = p,, where the pn are the roots of the denominator in Equa- 

tions (1.11) to (1.13). 

1. 

An investigation of these roots was carried out by the authors in 

E 9 1, where an approximate expression was obtained for them. Here we 

give only the formulas for the limiting regime of uniform motion of the 
fluid, which are found by calculating the residues at the pole p = 0: 

UO ~dnhM --4&M 5 ho -_= _ = z _ M (c-h&f --c&l ME) 
a tinhM 7 RMM 

(1.16) 

e0 -=- E, i’= -R, linhM 
rinb ME 

a 

Thus by means of crossed magnetic fields - a uniform transverse one 

and a longitudinal one that increases linearly with time - it is possible 

to create a uniformly moving stream of fluid. 

2. LIriwing BP ideal fluid in a pfane channel, We consider 

the problem posed in Section 1 for the case of sn inviscid electrically 
conducting fluid. With q = 0 the system of equations (1.8) takes the form 

J=-dg=Rm(E+U), pH=-g (2.1) 

where the boundary conditions are the following: 

E = 0 for E = 0, H = N, for j --= t. (2.2) 
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From (2.1) we find the equation 

@H p” -- 
G2 i-t-P/H, 

HI0 

whose solution we write in the form 

H = Cl Gosh 
t/$ Igp, R, 

PE 
+ ” dnhi J/Q + p i R, 

(2.3, 

(2.4) 

Finding expressions for U and E from (2.1) with the use of (2.4), and 
determining the constants of integration by means of the boundary condi- 
tions (2.2), we obtain the following equations for U, H and E: 

(2.5) 

Let h, = QT as above. Then the determination of u, h and e is reduced to 
the calculation of the residues at the poles 

(2.6) 

Performing the calculations, we obtain for the distributions of speed 
and magnetic and electric field intensities in the fluid 

3--2X(- 
k=o 

1 - 
l/hk2 - 4Rm2 

sinh 
i 

&; t/hk’ - 4Rm2)] 
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‘Ibe first terms in Equations (2.7) to (2.9) represent the limiting 
regime of uniform motion of the fluid, and the remaining terms the tran- 
sitional regime. It follows from these results that for R, < n/4 the 
transitional regime has an aperiodic character, whereas for R, > n/4 it 
exhibits a finite number of damped oscillations. 

It may be noted that here, in contrast with a viscous fluid, the 
current density in the fluid is equal to zero for the regime of estab- 
lished motion. 

We consider also the case that the intensity of the external magnetic 
field increases according to the law h, = ,8r2 1 

For the limiting regime we obtain the relationships 

As is seen from Equations (2.10), in this case there is 
the aid of crossed magnetic fields a uniformly accelerated 
fluid in the channel. 

created with 
stream of 

In concluding this section we note the following circumstance arising 
from Equations (2.7) to (2.9): in the case of plane unsteady motion of 
an ideal incompressible fluid in a constant transverse magnetic field, 
the speed, and also the induced electric and magnetic fields, are repre- 
sented by functions of the form+ 

(where X is an arbitrary parameter), satisfying the equation 

(2.11) 

(2.12) 

Solutions of this equation for the case of a half-space were con- 
sidered in [ 10 1 . 

3. Driving an ideal fluid in a channel of annular cross- 
section. We investigate now the possibility of driving an inviscid con- 
ducting fluid in an infinitely long channel of annular cross-section, 
which is formed by an inner ideally conducting cylinder of radius a and 
an outer nonconducting cylinder of radius b. ‘Ihere is a radial magnetic 
field B, = B,,a/r. Motion of the fluid arises as a result of penetration 

l For R, + CO these solutions become Alfven waves. 
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of a uniform longitudinal magnetic field Bzft), which is created in the 
vicinity of the outer cylinder by external annular currents. 

The investigation of unsteady longitudinal motion of a viscous con- 
ducting fluid in an annular channel in the presence of a radial magnetic 
field presents significant mathematical difficulty. In [ 11 1 it was found 
possible to integrate the appropriate equations only in the special case 
of equal viscous and magnetic Reynolds numbers. We therefore restrict 
consideration to the flow of an inviscid fluid. For the region occupied 
by the fluid we have the following equations: 

Here 

(3.2) 

The initial and boundary conditions for the problem have the form 

u = 0, h = 0, e=O for z = 0 (3.3) 

e I_ , zI = 0, h I+“,, = ho (4 for “c>O 
i (;i, = 4, (3.4) 

Applying the Laplace transformation, we obtain from (3.1) 

,k-+J, J--g= R,(E+ ;), (3.5) 

From this system we find for the transform H 

(3.6; 

Substituting x = R.4 (1 + p5 2/R,1, we obtain the Bessel equation 

dw 1 dH __-L-- 
ds” 4 I dx 

--H=O (3.7) 

whose solution has the form 

H = Cl10 (cc) +C& (2) (3.8) 

Determining C, and C, from the transformed boundary conditions 
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we obtain the following expressions for the transforms U, H, E: 

&,$o 
O- =7x- [II (5) X1 (xl) - II (a) K1 (x)1 

Ho H = - [lo (2) Kl (a) -+ 11 (a) Ko (%)I 
A (3.10) 

E1;=- Hex Ifi [II (2) Kl (a) - II (a) Kl (x)1 
where 

A v/H, (22 - l&2) 

A = lo (52) Kl (a) + II (XI) Ko (52) (3.11) 

Leaving aside the investigation of the transitional regime, we limit 
ourselves to giving the formulas for the limiting regime of uniform 
motion of the medium obtained in the case h, = ar : 

UO 110 -=+(P--i): <=t. ;"=-&~2_l) a 
(3.12) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

BIBLIOGRAPBY 

Resler, Sears, Perspektivy magnltnoi aerodinamiki (The prospects for 
magneto-aerodynamics). Mekhanika No. 6, 1958. 

Resler. Sears, Magnitogazodlnamicheskoe techenfe v kanale (Llagneto- 
gasdynamic flow in a channel). Mckhanika No. 6, 1959. 

Gordeev, G.V. and Gnbanov, A. I., K voprosn uskoreniia plaznw v mag- 
nitnom pole (On the question of acceleration of a plaema In a 
magnetic field). 2h.T.P. 28, 9, 2046-2054. 1958. 

Gordeev, G. V. , Nestattsionarnoe vraahchenle plazmy v magnltnom pole 
(Unsteady rotation of a plasma in a magnetic field). 2h.T.F. 31. 3, 
271, 1961. 

Lielpeter. Ia., Razgonnoe techenie zhidkogo metalla v elektronagnit- 
nom indnkteionnom naso1)e (Driven flow of a liquid metal in an 

electromagnetic induction pump). Izv. AIP LatvSSR 2, 79-86, 1960. 

Baranov, V. B. , 0 razgone provodiashchego gaza begashchim magnitnym 
polem (On driving a conducting gas with a running magnetic field). 
Izv. AN SSSR, Ol!N, Mckh. i Maah. NO. 4. 14. 1960. 

Iantovekii, E. I., Odnomernoe techenle elektroprovodnogo gaza s pos- 
tolannoi skorost’iu v begushchee magnitnom pole (Uniform flow of 



Acceleration of electrically conducting fluids 1275 

an electrically conducting gas with constant speed in a running 
magnetic field). IZV. AN SSSR, OllV, Mckh. i lash. NO. 4, 166, 
1960. 

a. Landau, L.D. and Lifshitz. E.Y., Elcktrodinarika sploshnykh srcd 

(Blectrodynarics of Contimous Media). GITTL, 1957. 

9. Ufliand, 1a.S. and Chekmarev, I.B., 0 tochnom reshenii odnoi zadachi 
magnitnoi gidrodlnamikf (On the exact solution of a problem in 
magnetohydrodynamics). Zh. T. F. 29. 11, 1412, 1959. 

10. Nardini, R., Losung eines Randrertproblems der Magneto-Hydrodynamik. 
ZAMM 33, 3, 304. 1953. 

11. Ufliand. Ia.S., 0 nekotorykh sluchalakh neustanovlvshegosia techeniia 
provodlashchel zhidkostl v kol’tsevoi trube.(On some cases of un- 
steady flow of a conducting fluid In an annular tube). Zh. T.F. 30. 

7, ‘799. 1960. 

Translated by M.D.v.D. 


